
Michele Mischitelli

Our first game
using UE4 and C++

… and a little bit of Blueprints ☺

Michele Mischitelli 2

Quick recap of UE4 building blocks

Useful stuff we’ll use later in the game

Michele Mischitelli

Unreal Engine 4

Blueprints, actors, delegates and subsystems

Blueprints

Used for fast
prototyping, UI and
less important logic

Actors

Core class that has the
concept of position
and components

Delegates

Dynamic binding of
member functions,
used for async ops

Subsystems

Automatically
instantiated objects
managed by UE4

3

Michele Mischitelli

Two ways of programming in Unreal

Blueprints
○ PRO

• Fast to learn (if unexperienced with C++)

• Rapid prototyping

• Mandatory for UI

○ CONS

• Slower execution

• Binary files (hard to work with in teams)

• Easy to make a mess → Hard to decode

• No support for merge/diff (although…)

C++
○ PRO

• Full access to UE4’s source code

• UE4’s assisted C++

• Fast execution

• Flexibility

• Source control support (merge, rebase…)

○ CONS

• Hard to learn

4

Michele Mischitelli

Hello, Blueprints

5

You can add more
components here

Add events,
functions, variables
to this Actor

Here you can
change properties
and assign assets

Michele Mischitelli

Gameplay Classes

6

Unreal Objects: UObject

• Reflection of properties and methods

• Serialization of properties

• Garbage collection

• Networking support for properties and methods

Actors: AActor

• Inherits from UObject, core to gameplay experience

• Objects that can be placed

• Composed of UActorComponents

• Network replication

Components: UActorComponent

• Define their own behaviour

• Functionality that is shared across actors

• Actors are given high-level goals → components perform tasks that support those

Structs: UStruct

• No need to inherit from a particular class

• Just mark it with USTRUCT()

• Not Garbage Collected

• PODs + reflection + networking + blueprint

Michele Mischitelli

Delegates in UE4

A single function is
bound to the delegate

7

Delegates that can be bound
to multiple functions and
execute them all at once

Delegates that can be
serialized and rely on reflection
(instead of function pointers)

Single Multicast

Dynamic

Similar to multicast, but only
the class that declares it can

Broadcast

Events

1-byte multicast
implementation. Even slower

than dynamic multicast

Dynamic Multicast
Sparse

○ Safe to copy

• Prefer passing by ref

○ Declared using MACROs

• In global scope

• Inside a namespace

• Within a class declaration

○ Support for signatures that

• Return a value

• Are const

• Have up to 8 arguments

• Have up to 4 additional payloads

Michele Mischitelli

Event delegate type

8

void Function()
DECLARE_EVENT(OwningType, EventName)
void Function(<Param1>, ...)
DECLARE_EVENT_<Num>Params(OwningType, EventName, Param1Type, ...)
void Function(<Param1>, ...)
DECLARE_DERIVED_EVENT(DerivedType, ParentType::PureEventName, OverriddenEventName)

It’s a multicast delegate

Any class can bind to events but only the one that declares it may invoke
Broadcast(), IsBound() and Clear() functions

Event objects can be exposed in a public interface without worrying about
who’s going to call these functions

Use case: callbacks in purely abstract classes

Broadcast() is always safe to call

Michele Mischitelli

Subsystems intro

9

Automatically

instanced

• Instantiated,
initialized and
destroyed by the
engine

• No need to wire
up systems to
spawn and track
this object

Managed

lifetime

• Five different
ones to choose
from

• Multiple instances
of the same
object if it makes
sense for the
chosen lifetime

WHY ?!

• Architectural
pattern

• Improved
modularity

• Especially useful
in plugins

• Save both
programming
time AND lines of
code

Michele Mischitelli

Subsystem lifetimes / types

10

The base class you derive from determines also the lifetime of your subsystem

○ Game-centric Subsystems

• UGameInstanceSubsystem: lives before the world. Persists when changing levels (maps) in the game

• ULocalPlayerSubsystem: each player active on the current client is represented by an instance of ULocalPlayer

• UWorldSubsystem: a world can be a single persistent level with a list of streaming levels or composition of worlds

○ Advanced Subsystems

• UEngineSubsystem

• UEditorSubsystem

UEditorEngine
UEngine

(Start)
UGameInstance

UGameEngine UGameInstance
UEngine

(Start)

UWorld AGameMode ULocalPlayer

Michele Mischitelli 11

Let’s start!

…the repo is available on GitHub ☺

Michele Mischitelli

Thank you
linkedin.com/in/michelemischitelli

twitter.com/michelemischit1

michelemischitelli@outlook.com

mmischitelli.github.io

