
Michele Mischitelli

Introductionto 
Unreal Engine 4

Game engines are no 
longer used (just) for 
games…



Michele Mischitelli

Recap of my life

(as developer, of course…)

○ 1985: New Coke, Back to the Future, Windows 1.0

○ 1996: MSX Basic -> started developing

○ 1998: First PC -> AMD K6 200MHz + S3 Virge DX

○ 2000: Visual Basic. Backup + Installers

○ 2001: ITIS -> Turbo Pascal, Assembler, C

○ 2007: CNR Pisa Trainee (OpenGL, Qt, C++)

○ 2008: Hypersoft -> TSim-X (C++/C#)

○ 2016: DigiCamere -> Web ( >_< )

○ 2016: Astron -> Astrophotography + Dev (C#)

○ 2016: Zuru -> C++ / UE4

○ 2019: Scuderia Ferrari -> C++

Who am I…?

Software developer, graphics aficionado, 
photographer.

My current themes: cyberpunk, sci-fi, retro-futurism 2



Michele Mischitelli 3

What are game engines?

Also: what they’re used for and why you 
should care



Michele Mischitelli 4

Game engines: software frameworks (also IDEs !)

Hardware and OS 
abstraction layer

We want our game to 
run on any platform

Our engine should be 
HW and OS independent

Domain engines

Graphics, Physics, Audio 
and Network are the 4 
main sub-engines that 

compose any game 
engine

Game logic

Event-driven architecture 
that allows the various 
subsystems and actors 
to interact as result of 

user input

Runtime objects

Everything that is 
spawned during the 

execution of the game



Michele Mischitelli

Game industry

Game engines are… well, used for games!

5

Multiplatform & customizability

Easy to port on 
other platforms

PC, Mac, Linux, Xbox, 
PlayStation, Switch, 

VR…

Tools for devs 
and designers 

Terrain editing, bug 
reporting, scripts, 
asset importing

Can be used for 
different games

RPG that is also an 
FPS that also makes 
gamers use vehicles

The engine itself 
can be sold…

Profits are profits! 
Good engines are sold 
to other companies…



Michele Mischitelli

Film industry

Tight schedules and lower budget drive interest 
for RT rendering, while improving workflow

Digital elements 
created in post

Placed in scenes 
already filmed

Set lights don’t 
work with them

Artists are finally able to 
visualize and choose

Go back to 
previous stages

Waste of time and 
money

6

It is like playing an 
instrument you don’t 

know and hearing the 
music only weeks after 

you hit the first note

Traditional film production workflow

Development
Pre-

production
Production Post

Want an example?



Michele Mischitelli

Making film industry more Agile

Encourages a more iterative, non-linear and collaborative process

Filmmakers collaboratively iterate on visual details on the fly

Iteration begins much earlier in the production schedule

High quality imagery can be produced from the outset

Assets are cross-compatible and usable from pre-vis through final 
output

Live production and VFX can occur in parallel

7

" "Every hour of pre-production is worth two hours of production
Zach Alexander, founder and COO of Lux Machina

Digital Domain’s Virtual Human



Michele Mischitelli

ArchViz

Architecture found in RT rendering a solution to 
the visualization problem

Saved architects, 
engineers and designers 

time and money

Customers wanted 
higher quality due to 

films and CG

8

Constantly reaching for higher fidelity

Drawings and 
watercolour

90s: CAD software

Offline rendering

Realtime rendering… ?

Rendering time for 
animations and stills 
drive interest for RT



Michele Mischitelli

Automotive

Car manufacturers use real-time workflows for 
marketing, design and showrooms

9

Differentiation and prototyping

Porsche, together with Nvidia 
and Epic, revealed a real-time 

cinematic experience 
introducing ray-tracing in a 

game engine

BMW brings mixed 
reality to automotive 

design

Ferrari and 
Mackevision created a 

realistic real-time 
digital showroom



Michele Mischitelli 10

Let’s start talking about UE4

One of the most popular and versatile game 
engine



Michele Mischitelli

Unreal Engine 4

C++ development intro

Full access to the 
engine’s source 

Can be customized 
and you can get 

inspired

UE’s Assisted
C++

Alternative to STL and 
Boost. Epic affirms it’s 

easier to work with

Everything can 
be done in C++

Even UI, thanks to 
Slate (but please, 

don’t…)

Constantly 
updated

A new engine version 
every 4-5 months with 
new features and fixes

11



Michele Mischitelli

Two ways of programming in Unreal

Blueprints
○ PRO

• Fast to learn (if unexperienced with c++)

• Rapid prototyping

• Mandatory for UI

○ CONS

• Slower execution

• Binary files (hard to work with in teams)

• Easy to make a mess → Hard to decode

• No support for merge/diff (although…)

C++
○ PRO

• Full access to UE4’s source code

• UE4’s assisted C++

• Fast execution

• Flexibility

• Source control support (merge, rebase…)

○ CONS

• Hard to learn

12



Michele Mischitelli

Hello, world! – Creating the project

13

Launching UE4 brings up this

Template selector, like VS’s File →
New → Project

Many templates, both Blueprint-
based and C++

Can include starter logic and 
actors to jump start the 
development

Starter content also available 
(materials, textures…)



Michele Mischitelli

Hello, world! – It lives!

14



Michele Mischitelli

Hello, world! – Creating an actor

15

Create C++ classes
from within the editor

VS’s solution is 
updated live



Michele Mischitelli

Hello, world! – Actually say hello

16

o TextWidget.h

o HelloWorldGameModeBase.cpp

o Click compile without closing UE… meanwhile, VS is still debugging… ;)

o TextWidget.cpp



Michele Mischitelli

Hello, world! – Tadaaan!

17



Michele Mischitelli

Hello, <whatever>

18

Improving the sample with Unreal-esque interactions

Create a new UPROPERTY
that will hold the 
customizable text

Define some attributes:
- EditAnywhere
- Category
- meta

Optionally, override the 
PostEditChangeProperty
method.

Beware! It’s declared only in 
Editor mode!

o TextWidget.h



Michele Mischitelli

Hello, <whatever>

19

o TextWidget.cpp
1

2

3

4

5

1) Define a default value that m_Text will hold

2) To understand exactly what happens, let’s give the 
text render component a placeholder text

3) Move the default text assignment from the CTOR to 
the BeginPlay method

4) Define the PostEditChangeProperty. It acts very 
much like PropertyChanged (C#/XAML)

5) Introduce a utility method to update the text 
render component



Michele Mischitelli

Hello, Placeholder … my old friend

20

Were you expecting Hello, 

World! to show up…?

You are right. I made a 
mistake…

ATextWidget it’s alright. The 

problem is somewhere else…

What are we really missing 
here…? What piece of code is 
apparently not getting 
executed…?



Michele Mischitelli

Hello, bugs

21

StartPlay signals the game has started playing

It sets an internal flag in the current world to true: 
bBegunPlay

If that flag is false, BeginPlay events on objects won’t 
get called

To fix the bug, it’s sufficient to forward the method call 
on the parent’s

Alternatively…



Michele Mischitelli

Hello, blueprints

22

You can add more 
components here

Add events, 
functions, variables 
to this Actor

Here’s where our 
m_Text property 

appears…
… and it’s editable!

Let’s change it to 
Goofy!



Michele Mischitelli

Hello, UClass*

23

We’re spawning a simple 
C++ class…

How do we spawn the blueprint associated 
to this? How does the SpawnActor method 

works…?

It’s getting the 
StaticClass from T

This really gets complex and involves 
talking about UE4’s reflection 

system… NOPE

It should be enough knowing that Unreal classes are described by this. SpawnActor needs to know which 
UClass to spawn… so either determines it by itself like above, or we pass it to an overload…



Michele Mischitelli

Hello, moar blueprints

24

Back to the ATextWidget_BP. It acts like a specialization of our C++ class…

o HelloWorldGameModeBase.h \ .cpp

o HelloWorldGameModeBase_BP

Create a new UPROPERTY in our 
HelloWorldGameModeBase

Modify the spawn method adding 
the newly created property

Create a BP based on 
HelloWorldGameModeBase

We can finally specify which class 
to use to spawn ATextWidget



Michele Mischitelli

Hello, Goofy!

25

Update project settings with the 
new HelloWorldGameModeBase_BP

Again, we need to tell UE4 which flavour of 
this class we’d like to use. In this case it’s 

different because it’s a special case…

We can even modify the string without recompiling thanks 
to the PostEditChangeProperty we overrode previously



Michele Mischitelli 26

Diving Deeper

Gameplay class hierarchy and how it all works



Michele Mischitelli

Gameplay Classes

27

Unreal Objects: UObject

• Reflection of properties and methods

• Serialization of properties

• Garbage collection

• Networking support for properties and methods

Actors: AActor

• Inherits from UObject, core to gameplay experience

• Objects that can be placed

• Composed of UActorComponents

• Network replication

Components: UActorComponent

• Define their own behaviour

• Functionality that is shared across actors

• Actors are given high-level goals → components perform tasks that support those

Structs: UStruct

• No need to inherit from a particular class

• Just mark it with USTRUCT()

• Not Garbage Collected

• PODs + reflection + networking + blueprint



Michele Mischitelli

Unreal Reflection System intro

28

#include "MyObject.generated.h"

UCLASS(Blueprintable)
class UMyObject : public UObject
{

GENERATED_BODY()

public:
UMyObject();

UPROPERTY(BlueprintReadOnly, EditAnywhere)
float ExampleProperty;

UFUNCTION(BlueprintCallable)
void ExampleFunction();

};

Tells UE4 to generate 
reflection data for a class.

Blueprintable → can be 

extended by a BP This is replaced by 
hundreds of lines of 

boilerplate code

Allows replication, BP 
interaction, serialization, 
GC (reference count).

EditAnywhere → editable 

in property window on 
archetypes and instances

UPROPERTY

UCLASS

GENERATED_BODY

UFUNCTION

BP interaction, RPC in 
networked scenarios

BlueprintCallable → can be 
called from BP



Michele Mischitelli

Memory Management and Garbage Collection

29

Root set → list of objects that the GC will not garbage collect

Objects are not GC/ed as long as there is a path of reference from an 
object in the root set to the object in question

If no such path exists, objects are said to be unreachable and will be 
GC/ed the next time the GC runs

What counts as reference? Pointers stored in UPROPERTY

Actors are automatically part of the root set and have to be manually 
destroyed: actor->Destroy()

After calling Destroy(), actors are marked as Pending Kill and will be 
actually removed from memory during the next GC clean-up

When UObject are GC/ed UPROPERTY are set to nullptr

It is possible to manage UObjects inside non-UObjects by inheriting from 
FGCObject



Michele Mischitelli

Numeric types and strings

30

Signed/Unsigned integers
○ int8 / uint8

○ int16 / uint16

○ int32 / uint32

○ int64 / uint64

Floating point
○ float

○ double

TNumericLimits<T>::Min()

TNumericLimits<T>::Max()

TNumericLimits<T>::Lowest() //on fp –Max()

FString

○ Mutable string (like std::string)

○ FString str = TEXT(“Hello, world!”);

FText

○ Like above, but for localized text

○ FText txt = NSLOCTEXT(“ns”, “key”, “default”);

FName

○ Commonly recurring string, stored as identifier to save 
memory. Also faster during comparisons

○ nameA.Index == nameB.Index

TCHAR – do not confuse with TChar<T>, FChar…

○ Used to store chars independent of the character set used

○ UE4 strings use TCHAR arrays (wchar_t / char)

○ Raw data can be accessed using the dereference operator



Michele Mischitelli

Containers

31

TArray<V, Allocator>

○ Much like std::vector with more functionality

○ Elements are GC/ed if TArray is marked as UPROPERTY

○ Custom allocator (FHeapAllocator)

TArrayView<V>

○ Templated, fixed-sized view of another array

○ Stores internally a pointer to the array’s first element, 
as well as the array’s size

○ Abstraction that tells the developer you’re not 
supposed to add/remove elements to the array

○ Original array can still be altered through Algo::Sort, 
Reverse

TSet<V, KeyFuncs, Allocator>

○ Addition, removal, finding are O(1)

○ Uses a sparse array for elements

○ Links elements into a hash through the use of buckets

○ KeyFuncs specify how elements are compared and 
searched

TMap<K, V, Allocator, KeyFuncs>

○ Implemented using TSet with custom KeyFuncs

○ Much like std::map

○ Key-value pairs: TPair<K, V>

○ Any type for key as long as it has a GetTypeHash

○ Custom allocator (TSetAllocator) that includes:

• Sparse array allocator: TArray (elems) + TBitArray
(allocated)

• Hash allocator (FHeapAllocator)

• How many hash buckets the map should use

○ TMultiMap: supports storing multiple identical keys



Michele Mischitelli

Thank you
linkedin.com/in/michelemischitelli

twitter.com/michelemischit1

michelemischitelli@outlook.com

mmischitelli.github.io


